Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.

Identifieur interne : 002420 ( Main/Exploration ); précédent : 002419; suivant : 002421

Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.

Auteurs : Morgane Urli [France] ; Annabel J. Porté ; Herve Cochard ; Yann Guengant ; Regis Burlett ; Sylvain Delzon

Source :

RBID : pubmed:23658197

Descripteurs français

English descriptors

Abstract

Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survival and xylem cavitation resistance in five angiosperm tree species known to have contrasting desiccation resistance thresholds. We exposed seedlings in a greenhouse to severe drought to generate extreme water stress. We monitored leaf water potential, total plant water loss rate, leaf transpiration, stomatal conductance and CO2 assimilation rate during drought exposure and after rewatering (recovery phase). The time required for the recovery of 50% of the maximum value of a given ecophysiological variable after rewatering was used to determine the critical water potential corresponding to the threshold beyond which the plant failed to recover. We also investigated the relationship between this potential and stem xylem cavitation resistance, as assessed from vulnerability curves. This minimum recoverable water potential was consistent between ecophysiological variables and varied considerably between species, from -3.4 to -6.0 MPa. This minimum recoverable water potential was strongly correlated with P50 and P88, the pressures inducing 50 and 88% losses of stem hydraulic conductance, respectively. Moreover, the embolism threshold leading to irreversible drought damage was found to be close to 88%, rather than the 50% previously reported for conifers. Hydraulic failure leading to irreversible drought-induced global dysfunction in angiosperm tree species occurred at a very high level of xylem embolism, possibly reflecting the physiological characteristics of their stem water-transport system.

DOI: 10.1093/treephys/tpt030
PubMed: 23658197


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.</title>
<author>
<name sortKey="Urli, Morgane" sort="Urli, Morgane" uniqKey="Urli M" first="Morgane" last="Urli">Morgane Urli</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 1202 BIOGECO, F-33610, Cestas, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 1202 BIOGECO, F-33610, Cestas</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Cestas</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porte, Annabel J" sort="Porte, Annabel J" uniqKey="Porte A" first="Annabel J" last="Porté">Annabel J. Porté</name>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Herve" last="Cochard">Herve Cochard</name>
</author>
<author>
<name sortKey="Guengant, Yann" sort="Guengant, Yann" uniqKey="Guengant Y" first="Yann" last="Guengant">Yann Guengant</name>
</author>
<author>
<name sortKey="Burlett, Regis" sort="Burlett, Regis" uniqKey="Burlett R" first="Regis" last="Burlett">Regis Burlett</name>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23658197</idno>
<idno type="pmid">23658197</idno>
<idno type="doi">10.1093/treephys/tpt030</idno>
<idno type="wicri:Area/Main/Corpus">002608</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002608</idno>
<idno type="wicri:Area/Main/Curation">002608</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002608</idno>
<idno type="wicri:Area/Main/Exploration">002608</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.</title>
<author>
<name sortKey="Urli, Morgane" sort="Urli, Morgane" uniqKey="Urli M" first="Morgane" last="Urli">Morgane Urli</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR 1202 BIOGECO, F-33610, Cestas, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR 1202 BIOGECO, F-33610, Cestas</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Cestas</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Porte, Annabel J" sort="Porte, Annabel J" uniqKey="Porte A" first="Annabel J" last="Porté">Annabel J. Porté</name>
</author>
<author>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Herve" last="Cochard">Herve Cochard</name>
</author>
<author>
<name sortKey="Guengant, Yann" sort="Guengant, Yann" uniqKey="Guengant Y" first="Yann" last="Guengant">Yann Guengant</name>
</author>
<author>
<name sortKey="Burlett, Regis" sort="Burlett, Regis" uniqKey="Burlett R" first="Regis" last="Burlett">Regis Burlett</name>
</author>
<author>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dehydration (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Europe (MeSH)</term>
<term>Fagus (physiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stems (physiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (physiology)</term>
<term>Quercus (physiology)</term>
<term>Trees (MeSH)</term>
<term>Water (physiology)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Déshydratation (MeSH)</term>
<term>Eau (physiologie)</term>
<term>Europe (MeSH)</term>
<term>Fagus (physiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Quercus (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Tiges de plante (physiologie)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Xylème (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Europe</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eau</term>
<term>Fagus</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Quercus</term>
<term>Tiges de plante</term>
<term>Transpiration des plantes</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fagus</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Plant Transpiration</term>
<term>Populus</term>
<term>Quercus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dehydration</term>
<term>Droughts</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Déshydratation</term>
<term>Europe</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survival and xylem cavitation resistance in five angiosperm tree species known to have contrasting desiccation resistance thresholds. We exposed seedlings in a greenhouse to severe drought to generate extreme water stress. We monitored leaf water potential, total plant water loss rate, leaf transpiration, stomatal conductance and CO2 assimilation rate during drought exposure and after rewatering (recovery phase). The time required for the recovery of 50% of the maximum value of a given ecophysiological variable after rewatering was used to determine the critical water potential corresponding to the threshold beyond which the plant failed to recover. We also investigated the relationship between this potential and stem xylem cavitation resistance, as assessed from vulnerability curves. This minimum recoverable water potential was consistent between ecophysiological variables and varied considerably between species, from -3.4 to -6.0 MPa. This minimum recoverable water potential was strongly correlated with P50 and P88, the pressures inducing 50 and 88% losses of stem hydraulic conductance, respectively. Moreover, the embolism threshold leading to irreversible drought damage was found to be close to 88%, rather than the 50% previously reported for conifers. Hydraulic failure leading to irreversible drought-induced global dysfunction in angiosperm tree species occurred at a very high level of xylem embolism, possibly reflecting the physiological characteristics of their stem water-transport system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23658197</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.</ArticleTitle>
<Pagination>
<MedlinePgn>672-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpt030</ELocationID>
<Abstract>
<AbstractText>Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survival and xylem cavitation resistance in five angiosperm tree species known to have contrasting desiccation resistance thresholds. We exposed seedlings in a greenhouse to severe drought to generate extreme water stress. We monitored leaf water potential, total plant water loss rate, leaf transpiration, stomatal conductance and CO2 assimilation rate during drought exposure and after rewatering (recovery phase). The time required for the recovery of 50% of the maximum value of a given ecophysiological variable after rewatering was used to determine the critical water potential corresponding to the threshold beyond which the plant failed to recover. We also investigated the relationship between this potential and stem xylem cavitation resistance, as assessed from vulnerability curves. This minimum recoverable water potential was consistent between ecophysiological variables and varied considerably between species, from -3.4 to -6.0 MPa. This minimum recoverable water potential was strongly correlated with P50 and P88, the pressures inducing 50 and 88% losses of stem hydraulic conductance, respectively. Moreover, the embolism threshold leading to irreversible drought damage was found to be close to 88%, rather than the 50% previously reported for conifers. Hydraulic failure leading to irreversible drought-induced global dysfunction in angiosperm tree species occurred at a very high level of xylem embolism, possibly reflecting the physiological characteristics of their stem water-transport system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Urli</LastName>
<ForeName>Morgane</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR 1202 BIOGECO, F-33610, Cestas, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porté</LastName>
<ForeName>Annabel J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cochard</LastName>
<ForeName>Herve</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guengant</LastName>
<ForeName>Yann</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burlett</LastName>
<ForeName>Regis</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Delzon</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Tree Physiol. 2013 Jul;33(7):669-71</RefSource>
<PMID Version="1">23878170</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cavitation resistance</Keyword>
<Keyword MajorTopicYN="N">drought resistance</Keyword>
<Keyword MajorTopicYN="N">hydraulic failure</Keyword>
<Keyword MajorTopicYN="N">mortality</Keyword>
<Keyword MajorTopicYN="N">recovery</Keyword>
<Keyword MajorTopicYN="N">water stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23658197</ArticleId>
<ArticleId IdType="pii">tpt030</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpt030</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Aquitaine</li>
<li>Nouvelle-Aquitaine</li>
</region>
<settlement>
<li>Cestas</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Burlett, Regis" sort="Burlett, Regis" uniqKey="Burlett R" first="Regis" last="Burlett">Regis Burlett</name>
<name sortKey="Cochard, Herve" sort="Cochard, Herve" uniqKey="Cochard H" first="Herve" last="Cochard">Herve Cochard</name>
<name sortKey="Delzon, Sylvain" sort="Delzon, Sylvain" uniqKey="Delzon S" first="Sylvain" last="Delzon">Sylvain Delzon</name>
<name sortKey="Guengant, Yann" sort="Guengant, Yann" uniqKey="Guengant Y" first="Yann" last="Guengant">Yann Guengant</name>
<name sortKey="Porte, Annabel J" sort="Porte, Annabel J" uniqKey="Porte A" first="Annabel J" last="Porté">Annabel J. Porté</name>
</noCountry>
<country name="France">
<region name="Nouvelle-Aquitaine">
<name sortKey="Urli, Morgane" sort="Urli, Morgane" uniqKey="Urli M" first="Morgane" last="Urli">Morgane Urli</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23658197
   |texte=   Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23658197" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020